Efficient queue control policies for latency-critical traffic in mobile networks
Résumé
We propose a novel resource allocation framework for latency-critical traffic, namely Ultra Reliable Low Latency Communications (URLLC), in mobile networks which meets stringent latency and reliability requirements while minimizing the allocated resources. The Quality of Service (QoS) requirement is formulated in terms of the probability that the latency exceeds a maximal allowed budget. We develop a discrete-time queuing model for the system, in the case where the URLLC reservation is fully-flexible, and when the reservation is made on a slot basis while URLLC packets arrive in mini-slots. We then exploit this model to propose a control scheme that dynamically updates the amount of resources to be allocated per time slot so as to meet the QoS requirement. We formulate an optimization framework that derives the policy which achieves the QoS target while minimizing resource consumption and propose offline algorithms that converge to the quasi optimal reservation policy. In the case when traffic is unknown, we propose online algorithms based on stochastic bandits to achieve this aim. Numerical experiments validate our model and confirm the efficiency of our algorithms in terms of meeting the delay violation target at minimal cost.
Fichier principal
Modele_URLLC_queue_control_only__Last_version_ (1).pdf (1.21 Mo)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|